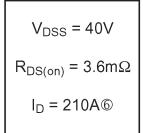
PD - 95490

International Rectifier

AUTOMOTIVE MOSFET

IRF2204PbF

HEXFET® Power MOSFET


Typical Applications

- Electric Power Steering
- 14 Volts Automotive Electrical Systems
- Lead-Free

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Timax

G

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	210©	
$I_D @ T_C = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	150©	A
I _{DM}	Pulsed Drain Current ①	850	
$P_D @ T_C = 25 ° C$	Power Dissipation	330	W
	Linear Derating Factor	2.2	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy②	460	mJ
I _{AR}	Avalanche Current①	See Fig.12a, 12b, 15, 16	А
E _{AR}	Repetitive Avalanche Energy⊘		mJ
TJ	Operating Junction and	-55 to + 175	°C
T _{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

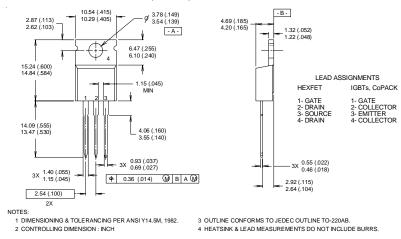
	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.45	
R _{0CS}	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	

IRF2204PbF

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	- ·			I		
	Parameter	Min.	Тур.	Max.		Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V$, $I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.041		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.0	3.6	mΩ	V _{GS} = 10V, I _D = 130A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = 10V, I_D = 250\mu A$
g _{fs}	Forward Transconductance	120			S	V _{DS} = 10V, I _D = 130A
Inno	Drain-to-Source Leakage Current			20		$V_{DS} = 40V, V_{GS} = 0V$
I _{DSS}	Brain-to-Source Leakage Guiterit			μA -	$V_{DS} = 32V, V_{GS} = 0V, T_{J} = 150^{\circ}C$	
1	Gate-to-Source Forward Leakage	_	_	200		V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-200	· nA ·	$V_{GS} = -20V$
Qg	Total Gate Charge		130	200		I _D = 130A
Q _{gs}	Gate-to-Source Charge		35	52	nC	$V_{DS} = 32V$
Q _{gd}	Gate-to-Drain ("Miller") Charge	_	39	59	1	V _{GS} = 10V⊕
t _{d(on)}	Turn-On Delay Time	_	15			V _{DD} = 20V
t _r	Rise Time		140]	I _D = 130A
t _{d(off)}	Turn-Off Delay Time		62		ns	$R_G = 2.5\Omega$
t _f	Fall Time		110			V _{GS} = 10V ⊛
	Internal Drain Industrance		4.5			Between lead,
L _D	Internal Drain Inductance		4.5			6mm (0.25in.)
					nH	from package
L _S	Internal Source Inductance		7.5			and center of die contact
C _{iss}	Input Capacitance	_	5890			V _{GS} = 0V
Coss	Output Capacitance		1570		pF	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		130]	f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		8000		1	$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		1370		1	$V_{GS} = 0V$, $V_{DS} = 32V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance ®		2380		1 1	$V_{GS} = 0V$, $V_{DS} = 0V$ to 32V

Source-Drain Ratings and Characteristics

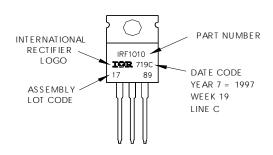

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			040@		MOSFET symbol
	(Body Diode)	2	210©	Α	showing the	
I _{SM}	Pulsed Source Current		050] '`	integral reverse	
	(Body Diode) ①			850	٧	p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	٧	$T_J = 25^{\circ}C$, $I_S = 130A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		68	100	ns	$T_J = 25^{\circ}\text{C}, I_F = 130\text{A}$
Q _{rr}	Reverse RecoveryCharge		120	180	nC	di/dt = 100A/µs - ⊕
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

International IOR Rectifier

IRF2204PbF

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)


TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead-Free"

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Starting $T_J = 25$ °C, L = 0.06mH $R_G = 25\Omega$, $I_{AS} = 130A$. (See Figure 12).
- $T_J \le 175$ °C.
- 4 Pulse width \leq 400 μ s; duty cycle \leq 2%.
- ⑤ Coss eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.
- 7 Limited by T_{Jmax} , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market.

